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ABSTRACT

A stopping rule, given data, is Informative relative to param-
eters of interest if it is random and statistically dependent
on those parameters. Practical examples considered in detail
illuminate the role of Informative stopping rules and show how
they may arise in practice. The discussion is based on the
Bayesian Approach.
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INFORMATIVE STOPPING RULES

by

Richard E. Barlow and S. W. W. Shor

Raiffa and Schlaifer (1961) discuss noninforative stopping rules in

their book. However, the role and importance of informative stopping rules,

especially relative to censored data, is not made clear. The following

examples and discussion clarify the role of informative stopping rules in

data analysis.

In recording or extracting information for statistical analysis, some

rule or set of instructions must be employed either explicitly or implicitly

in order to terminate the recording or information extraction procedure.

For example, records on fossil fuel electrical power plants were searched

relative to the frequency and duration of forced outages exceeding 60 days.

Since the records were tabulated by quarter of a year, all outages exceed-

ing 30 days in a quarter were extracted from the record. If an outage ex-

ceeding 30 days was still in effect at the end of a quarter, the following

quarter was searched to complete the record for that particular outage. If

an outage exceeded 30 days from the start of a quarter, the previous quarter

was searched to complete the record also for that particular outage. By

following this procedure, we could be sure that no 60 day or greater outage

was missed. Relative to 60 day or greater outages, this particular stopping

rule, given the data, was noninformative with respect to model parameters.

All of our information about model parameters was contained in the number

and durations of 60 day or greater outages--none of which were missed.

Rowever, it subsequently became necessary to use the same extracted

data to assess the frequency and duration of 30 day or greater forced
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outages. Relative to these outages, our search procedure, and hence our

stopping rule, almost surely missed some 30 day or greater outages in the

record. See Figure 1. The missed outages constitute an unobserved nuisance

parameter, say # , whose distribution depends on both the stopping rule and

the unknown model parameters of interest. Given observed 30 day or greater

outages and the knowledge that some could have been missed, our stopping

rule was now informative relative to unknown model parameters defining the

probability distribution for outage durations exceeding 30 days.
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1. DEFINITIONS

Suppose a unit lifetime (or downtime) duration, X , depends on un-

known parameters, - (61,e 2' ... , 8s) . Observation on a unit may stop

before a unit lifetime (or downtime) duration is observed. Let STOP be

a rule or a set of instructions which determines when observation of a

unit stops. STOP may be random and dependent on unknown parameters. The

stopping rule is not necessarily the same as the "stopping time."

The stopping rule discussed in the introduction was: "Extract a

downtime duration from a quarterly record if it exceeds 30 days, otherwise

ignore it." Consequently, relative to inference about 30 day downtime

duration probability parameters, this stopping rule is random, since

observation of any particular unit downtime is random.

Definition:

A stopping rule, STOP , is noninformative relative to model parameters

0 = (1 ... , 0s) if STOP is statistically independent of 6 , given

data; i.e.,

STOP 1 0 I Data

Another way of saying this is that the posterior density for 8 ,

given the data, is the same as the posterior density for 6 given the data

ad the stopping rule; i.e.,

w(8 I Data) - w( I Data, STOP)

for all 0

If the stopping rule is not random relative to the data, then it is

independent of 0 . In our example, the stopping rule was not random
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relative to 60 day downtime durations, since none were missed. Consequently,

the stopping rule was noninformative in this case.

Formulas for calculating the likelihood have been developed for general

sampling plans in which the stopping rule is noninformative given data [cf.

Barlow and Proschan (1980), Theorem 1.7]. Most of the stopping rule examples

in the statistical literature concern noninformative stopping rules. An ex-

ception is a paper by Roberts (1967) which presents an example based on fish

capture-recapture sampling methods. However, he comments that "interest in

exploiting the information in the stopping rule is likely to be great only

for very small sample sizes." Although his statement applies to his examples,

it is not true for the example we now discuss in detail.
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2. ANALYSIS OF AN INFORMATIVE STOPPING RULE

Consider the stopping rule, STOP , discussed in the introduction and

the list in Table 2.1 of outages 30 days or greater extracted from quar-

terly records. There were k - 72 such outages found. However, due to

the stopping rule, some outages of this type were almost surely missed.

Since we are interested in the conditional probability distribution

of the excess over 30 days of such outages, we subtracted 720 - (24)(30)

hours from the listed duration hours in Table 2.1. Let Y1 Y2, ".. Yk

denote these excess downtimes. A transform of this data was then plotted

in Figure 2.1. Were the conditional distribution of excess durations ex-

ponential,we would expect the plot to lie close to the 45 degree line

and, in fact, cross it. Since our plot exhibits this type of behavior and

since also the sample coefficient of variation is close to 1, we adopt an

exponential model

f(x 1 8) - (l/ -)ei/e

for our conditional probability distribution of excess durations. The

rational for this procedure is based on

(a) the relatively large sample size, k - 72 ;

(b) the total time on test plot is the maximum likelihood

estimate of a transform of the sample distribution.

Obviously, the exponential model is mathematically convenient and can be

justified if it provides a close approximation measure for our uncertainty

about conditional durations, given the data k and yl'y2 ' .. 9 Yk"
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TABLE 2.1

FOSSIL UNITS 575 MW AND LARGER

DOWNTIME

DURATION
DATE UNIT HOURS

Quarter 1 1976
2/18/76 Amos Unit 1 1412
1/30/76 H. L. Bowen Unit 1 1018
2/22/76 Kincaid No. 2 1660
2/07/76 Ninemile Point No. 4 1294

Quarter 2 1976
4/01/76 H. L. Bowen Unit 1 4390
4/01/76 Cardinal Unit 2 792
5/17/76 Monroe No. 1 781
4/20/76 W. H. Sammns No. 6 733

Quarter 3 1976
7/20/76 Bowline Point Unit 1 1469
8/08/76 Kincaid No. 2 1125

Quarter 4 1976
10/11/76 H. L. Bowen Unit 2 797
12/20/76 Ninemile Point No. 5 2755

Quarter 1 1977
3/07/77 Amos Unit 2 2925
1/18/77 Chalk Point Unit 3 806
3/21/77 Cliffeide Unit 5 996
2/28/77 Gorges Unit 10 720
2/05/77 Nohave Unit 2 1161
2/14/77 Ninemile Point No. 4 2548
1/03/77 W. H. Samis No. 6 4432

Quarter 2 1977
4/30/77 Astoria Project 3913
4/08/77 Baxter Wilson Unit 2 940
6/24/77 H. L. Bowen Unit 1 1053
5/27/77 Bowline Point Unit 2 1631
4/05/77 Osveo Unit 5 1035

Quarter 3 1977
8/10/77 kiev. Creek Unit 1 773
8/08/77 Chalk Point Unit 3 915
9/30/77 Chalk Point Unit 3 846
7/07/77 Sberburne Unit 1 1521

Quarter 4 1977
11/06/77 A" gait 2 850
11/09/77 3l8leir Unit 2 792
11/30/77 Cmberlmad Vit 1 766

Hi 4- r
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DOWNTIME

DURATION
DATE UNIT HOURS

11/23/77 Kincaid No. 1 1928
11/15/77 La Cygne Unit 1 961
10/04/77 W. H. Sammis No. 7 1257

Quarter 1 1978
2/24/78 Cumberland Unit 1 851
1/30/78 Harrison Unit 2 3625
2/01/78 Mohave Unit 1 3528
3/10/78 Ninemile Point No. 5 2216
1/a9/78 W. H. Smmis No. 7 3109

Quarter 2 1978
5/05/78 Gaston Steam Plant Unit 5 864
5/15/78 Marshall No. 3 1408
5/19/78 Ninemile Point No. 4 2958
5/03/78 Tradinghouse Creek Unit 2 2188

Quarter 3 1978
7/01/78 Centralia Unit 1 1559
7/16/78 Ninemile Point No. 4 3557
9/29/78 Ormond Beach Unit 2 776

Quarter 4 1978
11/06/78 Keystone No. 1 768
10/03/78 Oswego Unit 5 1247

Quarter 1 1979
2/17/79 Conesville Unit 4 2411
1/01/79 Hatfield No. 1 4167
1/01/79 Hatfield No. 1 3320
1/01/79 Mt. Storm No. 1 2159
2/03/79 Paradise No. 1 3424
3/30/79 Ravenswood No. 3 2903

Quarter 2 1979
4/01/79 Baxter Wilson Unit 2 1672
6/28/79 Harrison Unit 2 3858
4/01/79 La Cygne Unit 2 1287
5/27/79 Mohave Unit 1 792

Quarter 3 1979
7/26/79 Astoria Project 1034
8/06/79 Harrison Unit 1 5116
8/30/79 Hudson No. 2 761
8/20/79 Keystone No. 1 1003
7/08/79 La Cygne Unit 1 920
7/23/79 Ormond Beach Unit 2 799
9/22/79 Pittsburg Unit 7 1573
9/29/79 W. F. Wyman Unit 4 1815

. .*S
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DOWNTIME
DURATION

DATE UNIT HOURS

Quarter 4 1979
10/01/79 Centralia Unit 2 1278
11/22/79 Mt. Storm Unit 3 2586

Quarter 1 1980
1/12/80 Hatfield No. 1 1287

Quarter 2 1980
5/05/80 Belews Creek Unit 2 1360
5/14/80 Kincaid No. 1 903
5/04/80 W. H. Sammis No. 7 1286

)-
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Relative to our data base, outages greater than 30 days are fairly

rare. Hence, given t - 492.5 unit years operating experience, our a

priori probability for observing k such outages is

P[N(t) - k I t,X] = (Xt)ke- t/k!

where X is the expected number of such outages per unit year. We

suppose that any exchangeable collection of additional units will have

this same unknown rate X
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3. LIKELIHOOD DERIVATION

Given t, STOP , and the data in Table 2.1, we need to calculate

the likelihood for e and A . Let I be the calendar period from

January 1, 1976 to the end of the second quarter 1980 less 30 days, since

we would not have caught such outages beginning within 30 days of the end

of the second quarter 1980. Our a priori expectation for the number of

such outages occurring in I is At , given A . The conditional prob-

ability that such an outage, having occurred in I , will not be missed is

[- p()

where is the probability that such an outage occurs in a A - 30

day interval preceding the end of a quarter and m - 17 is the number of

critical intervals. This probability is multiplied by p(8) , the condi-

tional probability that such an outage falling within a critical interval

will actually be missed. Hence, our prior expectation for the number of

observed outages in t unit years operating experience is

Xt p(e

We now derive the formula for p(B) . Suppose an outage of length

Z starts in a critical A - 30 day interval and at time x , u time units

from the end of a quarter. See Figure 3.1. Let Z - A + Y where Y is

the excess over 30 days. Then

p(e) = P{Z <u + Al Z > A ,outage starts in A interval) -

I uA

M P{ < U A- a -- U/e !L
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and

e

The observed number of outages is also Poisson with parameter

Xt[1 - 2A p(8)] . This can be shown from first principles by successively

conditioning and unconditioning starting with the formula

P[N(t) - k I X,e,t,STOP]

-nak ti-n-k Jn() (I- ~( k[()nkC

By straightforward algebra, we obtain

P[N(t) - k I )X,e,t,STOPJ

( e k [ l -. t~ m A P

The likelihood for X and e , given k observed such outages

with excess durations Y1,Y2, . "Yk and stopping rule STOP, is

L(X,8 I koylo ... 9 ykgt*STOP1

k~ k[1 -X mA -MAk P(e]ekTe

since conditional on k outages in I

L(O Ik,T) -ke-/

k
where T I Xy'j . Note that conditional on k *(k,T) is sufficient for

101

* under the exponential model.
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Were the stopping rule STOP given data noninformative, the likeli-

hood would have been

Ak e-A )-tkT/O

In this case, we would have estimated A and 6 by A -k/t and

8 * - T/k .However, a closer approximation to the MLE's can be found by

using 8-T/k and calculating the value A for which

A k[l - AP(;)]k e[ !P()

is maximum. This approximate ME, A , is

A k
A-

41 -POT

[See DeGroot (1970, p. 199) for layesian justification for NLE.]

9-onrical Examle:

For the data in Table 2.1, k - 72 , T - 7.5768 x 10 hours and

t - 492.5 unit years so that A -0.146 per unit year. On the other

had, 6-T/k and p(a^) - 0.276 so that

A 72/492.541 1(0 (0.276)]

-d

A -72/(492.5)(0.911) '0.163

This Is a 92 Increase over A *I
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4. STOPPING RULES USED IN LIFE TABLE ANALYSIS

Breslow and Crowley (1974) and Lindley (1979) studied the following

model relative to estimating death rates for specified age intervals.

Associated with each individual is a pair of independent random quantities,

X , the lifetime and Y , the withdrawal time. The raw observations for

an individual are Z - Min (X,Y) , the time at which he leaves either

through death or withdrawal, and an indicator which says whether the de-

parture was caused by death or withdrawal. The time scale is then divided

into nonoverlapping intervals and the Z's grouped so that observation is

only made on the interval within which he left the system. The quantities

for different individuals are judged independent and identically distributed.

Consequently, if N individuals are present at the beginning of an interval,

the data consists of D , the number who were observed to die in the inter-

val; W the number observed to withdraw alive during the interval; and S

the number who survived to enter the next interval. We consider only the

single interval [0,A] . Let X have distribution F and let * = F(A)
be the random quantity of interest. Let Y have distribution H , -- H(A)

and

P =  F(x)dH(x)/e#

so that p is the conditional probability that a death is observed, given

that both withdrawal and death take place in the interval. As Lindley

(1979) points out, the likelihood for # , e and p can be calculated

given D , S and W . Obviously, 6 and p are nuisance parameters.

Since observation on a unit ceases at tin (X,Y,A) and Y is random,

the stopping rule is random. Is the stopping rule informative?
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Given the stopping rule, W provides partial information about .

Note that W - D + S where D is the number of withdrawals that would

have been observed to die in [0,A] had they not been withdrawn and

similarly for S . The probability that an individual will die in [O,A]

and his death will not be observed is e#[l - p] , which clearly depends

on * . The likelihood as calculated by Lindley (1979) is

L(fep I D,S,W)
- D(l - P)wU - s{ - (l - P)eDe(1- 6) s

Since 6 and p are nuisance parameters, they must be integrated out

with respect to a joint prior for (#,O,p) .

Were we given the ages of death (x1 , ..., xk ) , the survival and

withdrawal ages (Li. ... ,1 s) and were the parameter of interest the

force of mortality [r(u),u > OJ , then the likelihood would be

L(r(u),u > 0 x1 , ... , xk , 'l12- ... 9 zm)

where n(u) is the number of individuals observed surviving to age u

In this case, the stopping rule would be noninformative, since the pos-

terior for [r(u),u > 0] would not depend on the stopping rule.
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5. CONCLUSION

In analyzing data, it is important to think about the way in which the

data was obtained. If the stopping rule, given data, is informative in the

sense defined in Section 1, the likelihood calculation may be more difficult,

but resulting estimates may differ significantly from those which ignore the

stopping rule. Whether or not the information contained in the stopping rule

is relevant depends on the observed data as well as the model, the parameter

of interest and its prior probability as the previous examples demonstrate.

m9
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